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Synthesis of microprogramming automata is usually based on classical finite state models 
[I]. The real microprogramming automata (MPA), which implement dozens of different algorithms 
(microprograms), are complex and largely undefined [2], making it difficult to use canonical 
methods of finite state synthesis for their design. On the other hand, the analysis of the 
structures of real MPA in discrete information converters (DIC) of various purposes (and 
especially computers) suggest that it is convenient to describe the structure of MPA as a 
set of interconnected and functionally defined components. It is natural to formulate an 
MPA structure as a combination of two connected automata: one automaton which receives sig- 
nals of algorithms (microprograms) P and logical conditions X to form signals of microcycles 
(micrommands) Y; and another automaton, forming from the signals P and Y the signals A, which 
initiate in the operating automaton (OA) of DIC the execution of microoperations. Figure I 
illustrates such an MPA structure; the first automaton is identified as microcycle former 
(MCF) and the second as control signal distributor (CSD). Synthesizing an MCF is relatively 
easy and its structure is well known [2]. Of more interest is the synthesis of CSD, which 
is the more complex and irregular component of MPA. In [3] it was shown that the CSD struc- 
ture can be improved (simplified and made more regular) if all MPA of the microprogram are 
brought together into a generalizing table organized in a certain way. The number of lines in 
the generalizing table is equal to the number of microprograms N and the number of columns 
is equal to the number of microcycles m of the longest microprogram.* Table 1 is an illustra- 
tion of such a table. The microoperations indicated in parentheses will be defined below. 
We will describe briefly the principles of generalizing table organization presented in [3]. 

The CSD structure is defined by the system of output functions 

U ~ = V P i Y  ~ k=l,----~, i : 1 ,  N, 1 =  l ,m,  (1) 

where Pi, Yj are the signals of the algorithm and the microcycle, respectively, which are 
coordinates of the box in the table where the microoperation A k is posted. 

The most elementary CSD structure is described by a system of minimized output func- 
tions. The functions are minimized by combining disjunctive terms with like arguments and 
applying the relations 

V Pi = 1, (2) 
ir 

*The design and organization of the generalizing table are considered as applicable to linear 
microprograms. We will demonstrate later that MPA synthesis could also be employed for non- 
linear microprograms. 

p ~  CSD 

MCF ~ X 

[ 

Fig. I. MPA struc- 
ture, 
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TABLE i. Generalizing Table with Non- 
fixed Microoperations 

Algo- Microcycle signals 
rithm 
signals Yt Y~ Ya Y~ Y~ 

P1 (AAt) A~ 
P2 A~ 
pP: A~ A s 

A~ As 
P5 (A1) A~ 

(A1) A 
A~ Aa 

A2 
(Ad A~ 
(A,) A~ 

s A~ A s 
(A1) A3 
(A1) A~ As 
(A1) A2 A 3 
A~ A~ 

A~ 
(AO As 
(Ad A3 
(Ax) As 

(A~) As AI(A2) 

TABLE 2. Optimized Generalizing Table 

Algo- signals 
rithm 
signals Y, Y, Y5 

P1 
P~ 
P3 
P4 
P5 

Az A~ 
AI A3 
AI A3 

A2 As 
A1 A2 

Microcycle 

Y~ Ya 

A~ A1 A8 
A1 A2 A1 A3 

A~ A1 A2 A3 
A2 Aj A~ A 3 
A2 AI A~ 

A2 
A3 
As 
A3 
A3 

A1 A2 
A1 A2 
A1 A2 
A~ A2 
A1 A2 

V Pi= APi, (3) 
iERl ir 

where R i s  t he  comple te  s e t  of  t he  s i g n a l s  of  a l g o r i t h m s ,  and RI ~ ~2-- R, R1 ~ R2 ~ ~ .  

Expression (2) corresponds to the occurrence of a microoperation in all boxes of the 
column labeled by the signal Yj. If condition (2) is not fulfilled, the signal of the micro- 
cycle Yj is gated by the permitting signals of the algorithms Pi, which use this operation 
in the microcycle Yj, or by the prohibiting signals of the algorithms Pi, which do not use 
this microoperation in the microcycle Yj. The choice of the left-hand or right-hand part 
of expression (3) in the notation of a particular output function is determined by the usual 
minimization criterion of Boolean functions. 

The system of CSD output functions corresponding to the illustration of Table I appears 
as 

/ UI=P2" Y1 V Ps'Y~ VPz' Y2 VPi" Y3 VPs" Y3 VPs" Y5 

u~=P2.fs.Y~VP~.Y2 V >~>2. r3 V P,.Y4 

The system of  o u t p u t  f u n c t i o n s  can be s i m p l i f i e d  by making use  of  t he  n a t u r a l  s t r u c -  
t u r a l  redundancy of  o p e r a t i n g  automata  [3 ] .  I t  i s  p o s s i b l e  to  i n t r o d u c e  i n t o  t he  m i c r o c y c l e s  
of  microprograms s o - c a l l e d  r edundan t  m i c r o o p e r a t i o n s ,  i . e . ,  o p e r a t i o n s  which a re  no t  neces -  
s a r y ,  but  do no t  d i s t o r t  t he  i n f o r m a t i o n  c o n v e r s i o n  a l g o r i t h m .  Such redundan t  m ic roope ra -  
t i o n s  can be e n t e r e d ,  in  p a r t i c u l a r ,  i n t o  the  empty boxes of  t he  t a b l e .  S ince  MCF does no t  
form the  s i g n a l  Yj f o r  t he  i - t h  microprogram i f  t he  e lement  ( i ,  j )  of  t he  t a b l e  i s  empty, any 
m i c r o o p e r a t i o n  i s  r edundan t  f o r  the  i - t h  microprogram a t  t he  j - t h  m i c r o c y c l e .  We assume 
t h a t  t he  microprograms a r e  a r r anged  s t a r t i n g  from the  f i r s t  column, and c o n t a i n  no empty mic ro -  
c y c l e s .  Then a l l  empty boxes in t he  i - t h  l i n e  a r e  to  the  r i g h t  of  t he  column r e p r e s e n t i n g  
the last microcycle of the i-th microprogram. 

One important feature of the microprograms is that they can contain so-called nonfixed 
microoperations, i.e., those for which several microcycles are specified with the requirement 
that in only one of the microcycles the microoperation in question must be executed. These 
sets of microcycles will be called the nonfixation interval of the microoperation; in the 
table, they are indicated by microoperations given in parentheses. For each microoperation 
within a microprogram, several nonfixation intervals are possible. Table I represents a case 
when none of the microprograms has more than one nonfixation interval with respect to A I, A 2. 
Recording the microoperations in parentheses in the boxes of the table should be done in such 
a way that relations (2) and (3) be satisfied, yielding the most elementary CSD structure. 
Table 2 is an illustration of a table with redundancy and an optimal placement of nonfixed 
microoperations. The corresponding output functions system appears as 

[ U~=P~.Y~ V P~'Y2 V Y3 V Y5 

U2-- Pz" p s" Y~ V PI" Yz V P~" Pz" Y 3 V P~" Y4 V Y5 

U3 = P,.Ps.Y, V P, "Y2 V P~.Y3 V P, "Y4. 

The recording of nonfixed microoperations simplifies the system of CSD output functions. 

Redundant microoperations can generally be entered only after nonfixed microoperations 
are fixed. There are, however, some redundant microoperations that can be entered regardless 
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of the presence of nonfixed microoperations in the table; for example, these are redundant 
microoperations of the microprograms which have no nonfixed microoperations, and the above- 
mentioned microoperations of empty boxes. In view of this, we will enter redundant micro- 
operations in two steps: before and after fixing the nonfixed microoperations; by way of 
convention, we will identify them as redundant microoperations of the first and the second 
group, respectively. 

The table will be optimized in the following sequence: 

i) optimize the table while simultaneously placing the nonfixed redundant microopera- 
tions of the first group and (if necessary) adding such microoperations; 

2) define the second group of redundant microoperations; and 

3) add (if necessary) redundant microoperations of the second group. 

These principles of table organization, if the table is large (real MPA implement tens 
and hundreds of operations consisting of tens and hundreds of microcycles), cannot be real- 
ized manually. In order to develop a formal algorithm for table organization, we assume that 
a line cannot have more than one nonfixation interval for each microoperation. We will show 
subsequently that this restriction is not essential for these algorithms. The generalizing 
table will be designated as the matrix A and the microoperations as elements of the matrix A. 

Optimizing the structure of a microprogramming automaton, defined with the output func- 
tions Uk, k = i, s therefore becomes equal to minimizing the number of conjunctions in the 
notation of the output functions. The number of conjunctions S in the notation of the output 
functions equals exactly the number of occurrences Ak, k = i, s in the matrix A: 

nz 

s = y,  sj,  (4 )  

where 

s 

S~ = ~ qk (]), (5)  
k=l 

q k ( j )  i s  t h e  number of  e l e m e n t s  A k in  t h e  j - t h  column of  t h e  m a t r i x  A. By v i r t u e  o f  ( 3 ) ,  
e x p r e s s i o n  (5)  can be r e w r i t t e n  as  

S ~ =  ~ min{qk(]); N qk(])}. (6)  
k=l 

Here qk(j) corresponds to the gating of the microcycle signal to the permitting signals 
of the algorithms Pi, and N - qk(j) by prohibiting signals of the algorithms Pi" 

Substituting (6) into (4), we obtain 
m $ 

S = ~ ~ min {qk (]); N - -  qk (])}. (7)  
] = I  k ~ l  

Suppose t h a t  a f t e r  p l a c i n g  n o n f i x e d  and add ing  r e d u n d a n t  e l e m e n t s  A k,  t h e  j - t h  column of  t h e  
matrix A contains pk(j) elements A k. It is obvious that 

qk (j) ~ pk (j) < qk (j) q_ d k (]) _]_ L k (]), (8)  

where dk(j), Lk(j) is the number of places where the nonfixed and redundant element can be 
posted, respectively. Now the solution of the problem ~ can be interpreted as 

m s 

= rain y_ ~ min{p k (j); N--pk(])}, (9) 
pk(j) /=i k~l 

where p k ( j )  s a t i s f i e s  ( 8 ) .  

I t  i s  obv ious  t h a t  t h e  sequence  o f  t h e  e l e m e n t s  A k, k = I ,  s ,  which d e t e r m i n e s  t h e  a d d i -  
t i o n  o f  r e d u n d a n t  e l e m e n t s  t o  t h e  m a t r i x  A and t h e  p l acemen t  of  n o n f i x e d  e l e m e n t s ,  does n o t  
a f f e c t  o p t i m i z a t i o n  problem;  i t  means t h a t  s problems have  to  be s o l v e d  c o n c e r n i n g  t h e  a d d i -  
t i o n  of  r e d u n d a n t  and o p t i m a l  p l acemen t  o f  n o n f i x e d  e l e m e n t s :  

s m $ 

= s (rain ~ min{pk(]); N--pk(])}) = ~ Sh, (10)  
k = l  ~Dk(l) /~1 k=l 
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where 
r~ 

S~ = min .~ min {pk (1); N - -  pk (])} ( 11 ) 
~ ]=1 

(The index k will be omitted in the subsequent derivations. ) 

Optimization of the matrix A using only redundant elements is not difficult. It is 
obtained by testing the condition for each j = i, m: 

rain {q (j); N - -  q (j)} > min {q (7) + L (7); N - -  q (j) - -  L (7)}. ( 1 2 )  

If the condition is fulfilled, we post in the j-th column L(j) redundant elements. 

We can now develop algorithms for optimization of the matrix A using only nonfixed ele- 
ments, and then construct the main optimization algorithm. 

Placement of Nonfixed Elements 

The following notations will be used: 

i) b(i) > 0, i = i, N is the number of places where nonfixed elements can be posted in 
the i-th row of the matrix A. 

2) D > 0 is the number of nonfixed elements which must be posted in the matrix A 

N 
D-- ~ c~, where (~i = {1' if b(i)=/=O, (13) 

i=l  0 ,  if b(/) --  0; 

3)  x j z j 2  -> 0;  J z ,  J2 = 1,  m, Jz  ~ J2 i s  t h e  number  o f  rows  i n  w h i c h  t h e  p l a c e s  o f  t h e  

m a t r i x  A - ( i ,  J z ) ,  ( i ,  J 2 )  a r e  a d m i s s i b l e  f o r  p o s t i n g  a n o n f i x e d  e l e m e n t  ( x j l j ~  -= x j 2 j l )  

m 

xj,j = d (/1); (14)  
j= l  
J:/=A 

4) Sf(jz .... ,jf), f = i, m is the sum corresponding to the sequence Jl, .... jf, defined 
recursively: IS0 ---- 0, 

! 
] S l  (Jl . . . . .  Jj) = S f - i  (Jl . . . . .  / t - l )  + rain {QI; 
t N - -  Qj - -  L (t)} ,  ( 15  ) 

r--I 
where Q1=q(jj) q-d(jl)-- ~xi~jl, [here L(j) = 0; j = 1, m]. 

We can now rewrite (7) as 

s = s ~ ( f i  . . . . .  J,n). (16) 
Definitions. i. We will say that the columns jz, J z are connected if xjzj2 ~ 0. Sup- 

pose that the places of the matrix A - (ii, Jl), (ii, J2) are permissible for posting a non- 
fixed elements. 

2. The following transformations will be called permissible in the matrix A. 

Transformation i. Post an element in the place (i I, Jl). In this case, 

1) q (]1): ---- q (Jl) + 1, 
2) d q l ) :  = d (11) - -  l ,  

3) b(~0: = 0, 
4) d (J2): = d (J2) - -  I, 

i . e . ,  VJ~=#=I1 ; t h e  p l a c e  ( i  1, J 2 )  i s  n o t  
ment. 

Transformation 2. The place (iz, j 
fixed element. Here 

(17) 

considered permissible for posting a nonfixed ele- 

l) is not considered permissible for posting a non- 
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1) b (iz): = b (i~) - -  1, 
( 1 8 )  

2) d (A): = d q, )  - -  ]. 

We will consider the optimal placement of nonfixed elements in the matrix A. Suppose that 
~z > l:q(j~) > N/2, v = i, z. 

3. The set of columns Z = {Jl .... ,Jz} will be called an optimal set. Suppose that an 
optimal arrangement has been obtained after nonfixed elements were posted first in column 

Jl, then in J2,...,Jm. 

4. The sequence of columns Jz, .... Jz .... ,Jm will be called an optimal sequence. 

THEOREM i. For any q(j) and d(j), j = i, m, there exists an optimal sequence, and Z = 
{Jl .... ,Jz} is an optimal set. 

In order to prove this theorem, we will consider the following lemmas. 

LEMMA I. When d(j) of nonfixed elements are posted in column j, j = I, m at q(j) -> N/2, 
we obtain 

S: =S--d(]) .  ( 1 9 )  

Proof. Posting a nonfixed element in the column j, we obtain 

Pq) = q(]) + 1, ( 2 0 )  

Then  ( 6 ) ,  by v i r t u e  o f  
By induction with re- 

then p(j) > N/2. This means that min{p(j); N - p(j)} = N - p(j). 
(20), can be written as Sj: = Sj - I. From (4) we have S: = S - i. 
spect to d(j), we obtain (19). �9 

LEMMA 2. 
N/2 we obtain 

S: = S + d ( i  ). 

Proof. Posting a nonfixed element in column j, we obtain 

p (J) = q (i) + 1. 

Then p(j) -< q(j) + d(j) < N/2. Therefore, min{p(j); N - p(j)} = p(j). Now (6), 
account (20'), can be written as Sj: = Sj + I. And for (4) S: = S + i. 

By induction with respect to d(j), we obtain (21). �9 

Proof of Theorem i. Suppose that 

1. V ] =  l , m  ]611 , i . e . ,  z = m. T h e n ,  by v i r t u e  o f  Lemma 1, 

m 

S = ~ (N - -  q (])) - -  D = m. N - -  G q (]) - -  D --  eonst = S, 
IEI, ]=I 

a n d  we c a n  f i l l  t h e  m a t r i x  A w i t h  n o n f i x e d  e l e m e n t s  i n  an  a r b i t r a r y  f a s h i o n .  

2 . V / =  1, ra ] C I  2 , i . e . ,  z = 0.  T h e n ,  by  v i r t u e  o f  Lemma 2,  

r n  

S =  ~ q ( l )  q - D =  ~ q ( l ) + D = c o n s t = S ,  
IEI, j~ l  

and  we c a n  f i l l  t h e  m a t r i x  A w i t h  n o n f i x e d  e l e m e n t s  i n  an  a r b i t r a r y  f a s h i o n .  

3. HI61zAEI618(HI612AEI6I~),  i . e . ,  0 -< z < m (1 < z < m) .  

When d(j) nonfixed elements are placed in column j, j = i, m, q(j) + d(j) 

( 2 1 )  

( 2 0 ' )  

taking into 

( 2 2 )  

( 23 )  
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Suppose that we have obtained an optimal arrangement of nonfixed elements when placing 
m 

in columns j, j = i, m, the column d'(j) -<_ d(j) of nonfixed elements. Here ~d'(])=D. 

We will show that '~Jz 

q (h) + d' (h) > ~ --~-- �9 (24) 

Suppose that Vj = i, m q(j) + d'(j) <- N/2. Then 

m m 

= ~ (q (]) + d' (])) ---- ~ q (j) + D. (25)  
i=1 i=l 

We will consider the arrangement of nonfixed elements resulting from posting d(jl) elements 
by transformation 1 in a column ]161 s A d'(]1)=/=0, while the remaining m- 1 columns are filled, 
as with an optimal arrangement [taking into account (17)]. Then 

m m 

s = ~ (q (]) + d' (i) - -  x~,/) + N - -  q ( i3 - -  d ( i0 = ~ (q (i) + d' (/)) - -  d' (h) - -q  ( ] , ) - -  
. i=. 1 i=1 
I~11 

m m 

Xhi + N - -  q ( ] , )  - -  d ( i , )  = ~.~ q (1) 4- D 4- N - -  2q (1,) - -  2d ( i t ) - -  d'  (1,). ( 2 6 )  
i=l /=i 
f#J, 

N d' Since q(JO q- d ( ] O > ' ~ -  A (]I)> 0, therefore 

N - -  2q (]z) - -  2d (]1) - -  d' (]~) < 0. 

From ( 2 5 ) - ( 2 7 )  ~ S - S < 0,  which  c o n t r a d i c t s  t h e  c h o i c e  o f  S. T h i s  p r o v e s  (24)  [ i f  y ] E I 2 A  
f f j E l a ,  t h e n  (24)  i s  e v i d e n t ] ,  i . e . ,  

I t  can r e a d i l y  be shown t h a t  t h e  a r r a n g e m e n t  o f  n o n f i x e d  e l e m e n t s  when a column ] ~ C Z  
c o n t a i n s  n o t  q ( J l )  + d ' ( J , _ )  > N/2 ,  b u t  q ( J ! )  + d ( J l )  > N/2 e l e m e n t s ,  w i l l  a l s o  be o p t i m a l .  

Le t  us  a p p l y  t o  t h e  e l e m e n t s  o f  t h e  column j~ t r a n s f o r m a t i o n  1. By r e p e a t i n g  t h e  above  
r e a s o n i n g  f o r  t h e  r e s u l t i n g  m a t r i x ,  we can f i n d  t h e  column j z ,  e t c .  �9 

THEOREM 2. I f  t h e  s e q u e n c e  ]~ . . . . .  [o~,-~, ]o~ . . . . .  j . . . . . .  ]o~,-~, ]co . . . . . .  ira, (o x = 1, z, o~ z = z -t- l ,  m ,  
i s  op t •  t h e n  t h e  s e q u e n c e s  1) ]1 . . . . .  j~,, ]~,-1 . . . . .  ]z . . . . .  ]~ and 2) ]z . . . . .  ] . . . . . .  ]~,, ]~,-~ . . . . .  ]~ 
are also optimal. 

Proof. Suppose jz ..... /~-~, ]~,, .... jz ..... ]~ is an optimal sequence 

z ~--! m v--I 

z Z 
v = l  i~l v=z@-I i~l 

1 .  F o r  t h e  s e q u e n c e  ]1 . . . . .  ]81']~1--1 . . . . .  JZ . . . . .  ] m ,  we have  

S = z (N - -  ( i , )  - -  (e  (:,) - -  Z + y, ,:,,))+ 
V=I t=l v=z-}-I i=l V;eO)l--1 

V~O)I 

where 

(01--? 

+ N --q ( j ~ , ) -  (d ( j ~ , ) -  • x&~,) +rain {B; N - - B } ,  

If B a N/2, then taking into account ~o,}~,_,: ~,_ii~,, we obtain S = S. If B < N/2, then 
by d e f i n i t i o n  o f  t h e  f u n c t i o n  m i n { * ;  *} ,  we have  S < S, which  i s  a c o n t r a d i c t i o n .  Hence 
s = g .  

2. For proving that a sequence is optimal, it is sufficient to note that after nonfixed 
elements are posted in the columns Jz ..... Jz, condition of item 2 of Theorem 1 will be ful- 
filled for the other columns. Therefore, the nonfixed elements can be posted in the columns 
Jz+1 ..... Jm in an arbitrary order. �9 
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COROLLARY I. There exist z!(m - z)! optimal sequences. 

COROLLARY 2. In order to obtain one of the optimal arrangements of nonfixed elements, 
it is sufficient to find an optimal set Z = {Jz ..... Jz}" 

Proof of Corollary 2. If we find Z = {Ji ..... Jz}, then by virtue of Theorem 2, any 

sequence Jz, .... Jz,''',Jm, where/vCZ, v= l,z;/v~Z ,v=z+l,m, is optimal. �9 

On the basis of the foregoing results, an algorithm can be constructed. 

Step 
sible for 

Step 
posting a 

Step 

m I �9 

Algorithm 1 (Placement of Nonfixed Elements) 

Step i. As long as ~i, j:q(j) k N/2 and the place (i, j) is permissible for posting 
a nonfixed element, apply transformation 1 to place (i, j). 

2. As long as ~i, j:q(j)+ d(j) ! N/2 A b(i) ~ 2 and the place (i, j) is permis- 
posting a nonfixed element, apply transformation 2 to place (i, j). 

3. If b(i) = I, find a column j such that the place (i, j) is permissible for 
nonfixed element, and apply transformation i to the place (i, j). 

4. Apply step 4 to all columns for which d(j) ~ 0. Suppose that their number is 

Step 4.f. f = i, 2... 

i) form C~l different sets consisting of f columns Z~ = {jr I ..... jv~}, ~ =1-~i; 

2) apply to all 16Z[ transformation i; 

3) if 

N (28) v/E Z~' q (i) > T '  

N (29) 
V/(~Z~' q ( j ) + d ( / ) < ~ T ,  

then admit Zf to step 5. 

Step 5. For all sets admitted to step 5, calculate S=Sm, (jr, .... /'vf ..... /m,), f=l,2..; v = 

I-~, ; find ~ (11 ..... ]z ..... J~1) = min S% (]4, ..... /'~t ..... I%) 
t,v 

Step 6. 

Jz, .... Jm I �9 

Apply transformation 1 successively to all elements of column Jl, then J2,..., 

Substantiation of Algorithm 1 

Step i. Follows directly from item 1 of Theorem i. 

Step 2. Follows directly from item 2 of Theorem I. 

Step 3. Follows from definition of a nonfixed element. 

Now for all columns the following condition holds 

N l) U ( ] )=o  or 2)d(])=A=OAqU)< T Aq(])+d(j)> N (3O) 
2 

Step 4. Suppose that Jl ..... Jz, .... jm I is an optimal sequence. After applying to it 

successively transformation i, (28) and (29) wil be fulfilled. Since condition (28) is the 
necessary condition of optimality of the set at step 4.z (i.e., at f = z), the step {Jz .... , 
Jz} will be admitted to step 5. 

Step 5. Since Jl ..... Jz ..... jm I is an optimal sequence, therefore any sequence ji I ..... 
Jiz ..... jm~ (its first z terms are formed of the set Z) will also be optimal, according to 
Theorem 2. 

Then S=~ (]q ..... /iz, . . . .  / m l ) = S m  I (11 . . . . .  ]m~) , i.e. , sequence ]q . . . . .  ]iz ..... /%, obtained at step 5 is 
also optimal, and at step 6 we can apply to it transformation I, so as to obtain one of the 
solutions of problem 2. �9 
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Examples of optimal sequences relative to nonfixed element A I are the following column 
sequences - i, 3, 2, 4, 5 and 3, i, 4, 2, 5 of the matrix A defined by Table i. The set {i, 
3} is optimal. 

This algorithm is, obviously, exponential. 

Instead of algorithm i, in certain instances, direct scanning of the fillings of the 
matrix A with nonfixed elements can be preferable. Indeed, suppose that after steps 1-3 the 
row i contains b(i) places permissible for posting a nonfixed element. 

N 

There are ~b(i) ways of filling the matrix A with nonfixed elements. Therefore, if 
f = l  N N 

a f t e r  s t e p s  1 -3  we h a v e  N b( i )<2ml ,  t h e n  i n s t e a d  o f  s t e p s  4 - 6  we c a n  c o m p a r e  ~ b(i) a l t e r -  
i= l  i = l  

n a t i v e s  o f  f i l l i n g  o f  t h e  m a t r i x  A w i t h  n o n f i x e d  e l e m e n t s .  

The dimension of the problem can be reduced greatly by separating groups of connected 
columns after steps 1-3. Then 4-6 steps will be applied to each group. Determining the 
groups of connected columns is not difficult; it is similar to finding the connectivity com- 
ponents in a nonoriented graph (where columns are nodes, and edges link the nodes correspond- 
ing to connected columns). 

Another highly effective way of reducing the amount of calculations is to stop at step 4 
if all f-element sets have been admitted to step 5, or if all sets have this property: after 
transformation 1 is applied to elements of the sets, each set contains columns for which 
q(j) -< N/2. 

Despite the potential improvements of algorithm 1 in real large-dimensionality prob- 
lems, a polynomial approximation of the algorithm is more efficient (algorithm 2). For con- 
structing algorithm 2, it is necessary to alter step 4. We introduce the notation af, f = 

i, m I, j = i, m I - f + i, or changing the sum S at the step 4.f of the approximate algorithm 
if nonfixed elements are posted in the column j. The approximate solution will be found when 

ml 

q(j) < N/2 A q(j) + d(j) > N/2 in the form Sappr. =S+ ~ min{a~}, ]----l,ml--fq-I. 
f=I 

When d(j) nonfixed elements are posted in the column j, subject to the con- THEOREM 3. 
ditions 

we have 

N q (]) < ~ - ,  

q (j) -I- d (j) > N_N 
2 

(31) 

Sl ---- S + N -- 2q (]) -- d (]). (32) 

P r o o f .  L e t  S '  be  sum ( 6 ) ,  c o r r e s p o n d i n g  t o  t h e  c a s e  when t h e  e l e m e n t s  o f  t h e  co lumn  j 
a r e  n o t  c o n s i d e r e d ,  i . e . ,  S = S '  + m i n { q ( j ) ,  N - q ( j ) } .  By v i r t u e  o f  ( 3 1 ) ,  

S =S'  +q(]). ( 3 3 )  

P o s t i n g  i n  t h e  j - t h  c o l u m n  d ( j )  n o n f i x e d  e l e m e n t s ,  we o b t a i n  S 1 = S '  + min { q ( j )  + d ( j ) ,  N - 
( q ( j )  + d ( j ) ) } .  T a k i n g  i n t o  a c c o u n t  ( 3 1 ) ,  

$1 = S' + N - -  q (1) - -  d (]). (34) 

From (33 ) ,  (34 ) ,  we o b t a i n  (32) .  �9 

On the basis of these results, we can construct algorithm 2. 

Algorithm 2 

Step I. 

Step 2. 

Step 3. 

Step 4. 
such columns. 

Same as step 1 of algorithm i. 

Same as step 2 of algorithm i. 

Same as step 3 of algorithm i. 

To be applied to all columns for which d(j) ~ 0. Suppose that there are m~ 
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Step 4.f. f = i, m1: 

i) find the column u: 

u =: arg max {2q (]) + d (])}i=l,~,--f+l; 

2)  a p p l y  t r a n s f o r m a t i o n  1 t o  t h e  e l e m e n t s  o f  t h e  c o l u m n  u ;  

3) if ~j:q(j) + d(j) s N/2, go to step. 

(35) 

Substantiation of Algorithm 2 

Ste p 4. Post at step 4.f d(j) nonfixed elements in a certain column j, j = i, f -m I + I; 
by virtue of Theorem 3 we have S I = S + N - 2q(j) - d(j). Therefore ~f = N - 2q(j) - d(j). 
Then 

~f rain { ] } ] = i ' . f - m , + l  = N - -  max {2q (]) + d (J)}/=l;f-m,-r 

I tem 3 in  step 3 i s  i n t roduced ,  because a f t e r  t r a n s f o r m a t i o n  1 i s  app l ied  to  column u, 
a column j can be formed, such t h a t  q ( j )  + d ( j )  -< N/2 ( i . e . ,  a column f o r  which the c o n d i t i o n  
of  Theorem 3 does not  h o l d ) .  We app ly  s tep 2 to  such columns. �9 

Note t h a t  the above-mentioned c o n s t r a i n t  of  the uniqueness of  n o n f i x a t i o n  i n t e r v a l  was 
used only in defining b(i); in order to generalize these results, we must modify definition 
of b(i) and transformations i, 2, as well as the steps in the algorithms associated with 
these definitions. 

Algorithm of Combined Optimization 

The tasks of entering redundant elements and posting nonfixed elements are intercon- 
nected. This can be seen from Table i. If a place for posting a nonfixed element A 2 is 
sought disregarding the possibility of supplementing the matrix with redundant elements A 2 
(in this case, redundant elements of empty boxes), then boxes (5, 4) and (5, 5) will not dif- 
fer [since q2(4) + d2(4) = 2 < N/2 and q2(5) + d2(5) = i < N/2]. 

If a nonfixed element A 2 is posted in the fourth column, then no redundant elements of 
A 2 will be posted in the fifth column in this matrix. Considering the interdependences of 
redundant and nonfixed elements of A2, we obtain the optimized matrix given in Table 2. 

The interdependency of nonfixed and redundant elements of the first group is taken into 
account in the following approximate algorithm of joint optimization. 

Algorithm 3 

Step I. 

Step 2. 
the condition qk(j) + dk(j) + Lk(j) ~ N/2. 

Step 3. Same as step 3 of algorithm I. 

Same as step 1 of algorithm i. 

Same as step 2 of algorithm I. The condition q(j) + d(j) ! N/2 is replaced by 

Step 4. Same as step 4 of algorithm 2. Here (35) is replaced by 

u = arg max {2q k (]) + d k (]) + L ~ (])}i=l,m,-l+r ( 3 5 ' )  

A l g o r i t h m  3 i s  c a r r i e d  o u t  f o r  e a c h  k = 1,  s .  The  s u b s t a n t i a t i o n  o f  a l g o r i t h m  3 i s  s i m i -  
l a r  to that of algorithm 2. 

Now, after placing nonfixed elements, it becomes possible to determine the redundant 
elements of the second group, and use them for optimization [as mentioned, we have only to 
test conditions (12)]. 

Note that at step 4 of algorithm 3 we can use a modified step 4 of algorithm 1 to obtain 
an exact algorithm. This is inefficient, however, because the use of algorithm 3 assumes 
that, subsequently, redundant elements of the second group will be considered. Since it is 
in principle impossible to determine these elements before placing nonfixed elements, no rea- 
sonable exact algorithm of joint optimization exists that could take into account the redun- 
dant elements of the second group. 

These algorithms have been developed for an MPA implementing a set of linear micropro- 
grams, but they also can be used for nonlinear microprograms. This requires a modification 
of MCF. In turn, branching and cyclic microprograms in the generalizing table may require 

772 



adjustments of nonfixation intervals. Indeed, the nonfixation interval of a microoperation 
should be limited to the branch of the microprogram to which it belongs. 

The algorithms have been implemented in PL-I language of ES operating system, and can 
be used in computer-aided design of digital information converters. 

i. 

2. 

. 

4. 

5. 
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BOUNDING ALGORITHM FOR THE ROUTING PROBLEM WITH ARBITRARY 

PATHS AND ALTERNATIVE SERVERS 

S. V. Sevast'yanov UDC 519.854.2 

A nontrivial property of optimal solutions of the Bellman-Johnson problem was discovered 
independently in [i and 2] in 1974. For any individual problem with activity length matrix 

ta V = ~  A = ~ *JJi=:~' where  m i s  t h e  number o f  mach ines  and n t h e  number o f  p a r t s ,  t h e  l e n g t h  o f  t h e  

optimal schedule T(Pop t) was found to lie in the interval s where 
n 

H (A) =ma__x ~ a~j, h(A)=maxaij,~(m) is a function of m. 
i=l,m 1=1 i] 

Thus ,  w i t h o u t  e n u m e r a t i n g  t h e  e n t i r e  f e a s i b l e  s e t  o f  s c h e d u l e s ,  we can e f f e c t i v e l y  f i n d  
t h e  optimum up t o  a v a l u e  i n d e p e n d e n t  o f  t h e  number o f  p a r t s  (which  i s  i m p o r t a n t  f o r  p rob l ems  
where  n ~ m). E f f e c t i v e  a l g o r i t h m s  t o  f i n d  a p p r o x i m a t e  s c h e d u l e s  P' w i t h  l e n g t h s  T ( P ' )  f rom 
t h e  i n t e r v a l  ~ were  a l s o  p r o p o s e d  in  [1 ,  2 ] ,  w i t h  a b s o l u t e  and r e l a t i v e  a c c u r a c y  e s t i m a t e s  

T (P') -- T (~p0 ~ ~ (m) h (A), ( 1 ) 

T (P')/T (~pO ~ 1 + ~ (m) h (A)/H (A), ( 2 ) 

i f  H(A) > 0. From (2 )  i t  f o l l o w s ,  in  p a r t i c u l a r ,  t h a t  i f  m ~ c o n s t  and h (A) /H(A)  + 0,  t h e n  
the solution P' is asymptotically optimal. It is significant that solutions P' with accuracy 
bounds (i), (2) were obtained in the class of permutation schedules with continuous activi- 
ties, which justifies the intuitive attempt of many researchers working with the Johnson prob- 
lem to restrict the analysis to this particular subclass of schedules. 

The Akers-Friedman problem is more complex by an order of magnitude: here instead of a 
single technological path of the parts through the machines (i, 2 ..... m) there may be up to m[ 
different paths, which are permutations of the numbers i, 2,...,m. Analysis of this model is 
further complicated by the absence of analytical representation of the objective function 
T(P). Nevertheless, the authors of [3-6] successfully established nontrivial properties of 
optimal solutions for the case aij ~ i. In particular, the bound 

T (Pop# "~ H (A) ~ + f (m) h (A) 

was obtained in [3]. This bound immediately suggests the following natural question: is it 
possible to replace Jm with I [and f(m) with some function ~'(m)] so as to bound the optimum 
inside the interval[H (A), H(A) @ ~'(m) h(A)]? First results suggesting an affirmative answer 

Translated from Kibernetika, No. 6, pp. 74-79, November-December, 1986. Original ar- 
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